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An experimental determination of the slow motion of a 
sphere in a rotating, viscous fluid 

By T. MAXWORTHY 

Jet Propulsion Laboratory, California Institute of Techiiolo,T 

(Received 15 January 1965) 

The drag of a sphere has been measured as it moves along the axis of a rotating, 
viscous fluid. Rotation has been found to modify the classical low-Reynolds- 
number flow so that the drag is increased and the effects of finite Reynolds 
number, R, andofwall proximity are reduced as the rotation parameter, theTaylor 
number T, increases. The results confirm the theory of Childress (1963, 1964) 
when both Reynolds number and Taylor number are small. The rate a t  which the 
sphere rotates with respect to the rotating fluid frame has also been measured 
and was found to be less than the values calculated by Childress (1964) for small 
T and R, but to approach the theoretical values in a reasonable way. 

1. Introduction 
Fluid motions at low Reynolds numbers have received attention during the 

past several years. Theoretical attempts have been made to extend the range of 
R over which accurate comparison to the real flow can be made. Recent experi- 
mental work (Maxworthy 1965) suggests that higher order terms in the asymp- 
totic series obtained for sphere drag, for example, may not be a very significant 
improvement over the first-order correction. 

In  the present work we add another externally controllable force to the equa- 
tions of motion in order to study further the balance between the various terms 
and check the usefulness of the asymptotic analyses. If a body is allowed to 
move in a fluid rotating with solid body rotation, two extra forces are introduced: 
the force caused by centripetal acceleration, and the Coriolis force. The former is 
readily assimilated into the pressure-gradient term of the equation of motion 
(Squire 1956), and only the latter need be included separately since density 
gradients in the flow are not considered. 

Specifically, the theory of Childress (1964) is for small Taylor number T and 
small Reynolds number R, where T = SZaZ/v, R = Ua/v,  SZ is the angular velocity 
of the basic solid-body rotation, U and a are the sphere velocity and radius, 
respectively, and v is the kinematic viscosity. It is possible to measure accurately 
the quantities of interest in this case in order to resolve such questions as: What is 
meant by small? What happens when T and R are large? What balance exists 
between the inertia, the Coriolis and the viscous forces in the flow? Can the 
effect of one be changed by changing externally the value of another ? The answers 
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should indicate a great deal about the nature of the equations and the solutions 
obtained. 

Subsidiary, but related, questions concerning the effect of wall proximity and 
its modification by rotation are also important. Answers have been obtained to 
all of these questions and, hopefully, will make it possible to obtain limits of 
theoretical applicability in problems which are not amenable to simple and direct 
experimental check. 

The most important of these problems, and in fact the one which prompted 
the present investigation, is the slow flow of an electrically conducting fluid 
around a body in the presence of an aligned magnetic field. Further amplification 
of this point is relegated to fi 6-1,  where the similarity between magneto-fluid 
dynamics and the dynamics of rotating fluids is developed, and the present 
results are considered in the light of the similarity. 

2. A brief description of the experimental technique 
In  order to avoid future confusion, the most important piece of nomenclature 

will be introduced at this point. It is necessary to distinguish four velocities at 
which the test sphere moves through the fluid: (1) the velocity in a rotating fluid 
of finite extent, U ;  (2) in a rotating fluid of infinite extent, U'; (3) in a non- 
rotating fluid of finite extent, Uo; and (4) in a non-rotating fluid of infinite extent, 

When a sphere rises at constant velocity U;, and low Reynolds number, 
Rh = Uhalv, in a non-rotating medium of infinite extent, its drag, D, can be found 
from the experimental results of Maxworthy (1965). Since all of the forces acting 
upon it are in equilibrium, the drag force equals the net gravitational force upon 
the sphere. If the fluid is now set into solid-body rotation, the rising sphere has 
the same net gravitational force and hence the same drag as when the fluid 
is not rotating. 

Because of the change in flow field caused by rotation, the sphere rises at a 
smaller velocity U' than when the fluid is not rotating. Thus, the Stokes drag 
BrpvaU', with which all drags are non-dimensionalized, is smaller when the 
fluid is rotating than when it is not. 

If we form the non-dimensional drag in the rotating case, D]6rpvaU',  we find 
that, although the drag itself is the same as the non-rotating case, because the 
Stokes drag is smaller, the dimensionless drag is increased by rotation. 

The drag measurement without rotation is thus a calibration run that tells 
us the drag on the sphere. It is possible that the net gravitational force could 
be measured directly, but the accuracy required is greater than can be obtained 
simply by conventional techniques. The present method has the added advantage 
of allowing calibration checks to be made at frequent intervals during any one 
experiment. 

Since an experiment cannot be performed in a fluid of infinite extent, a 
method must be devised to produce results for an infinite fluid in a finite-sized 
container. In  this work, the sphere is allowed to rise through three cylinders of 
different diameters. The time of rise is found for each cylinder, and the results 

U& 
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extrapolated to a container of infinite size; or, more precisely, the rise-time is 
plotted versus alA and extrapolated to the zero value of alA, where A is the 
cylinder radius. In  this way, the effect of finite R, T and alA can be included in 
the final results. 

3. Apparatus and procedure 

several interesting features. Figure 1 shows the major apparatus. 
The experimental equipment, although basically very simple, incorporates 

Sphere dispensing Tnner cylinder control rods J 

11 

tubel \  Lucite cap H 4 
/ I 

Cylinder A- 

Water 
jacket\ 

Cylinder D 

'm 

I Cylin'der C 

-Thermometer K 
Float controlled valve F 
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Constant temperature 
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[Mirror 

O-ring drive 

Flywheel 

FIGURE 1. Apparatus. 

The space between the two outer Lucite cylinders C and D is a constant- 
temperature water jacket. Water is pumped from a Fisher Isotemp bath E 
through a float valve F into the annular space, from when it is withdrawn by the 
siphon tube G back into the Isotemp bath. The temperature is controlled to with- 
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in & 0.01 "C by this procedure. Such exact temperature control is quite essential 
for the accurate operation of the whole system. A 0.1 "C difference in temperature 
can cause the time of rise of the sphere to change by as much as 1 %, and this 
change, when the small difference in rise time caused by rotation is being 
measured, can result in inaccuracies of the order of 10 yo in the over-all results. 

The cylinder C holds the working fluid, glycerin. It is covered by a Lucite 
cap H, through which the sphere dispensing tube I, the inner-cylinder control 
rods J, and thermometer K protrude. Both inner cylinders A and B can be manip- 
ulated from outside by the control rods J. The larger of the two inner cylinders 
made of Lucite, has a simple pumping device attached to its middle. A Lucite 
annulus L has several holes cut in it; these are normally covered by a thin metal 
sheet M which can ride up and down on short support rods. When the inner tubes 
are moved up and down in the tube C, this device acts as a simple lift pump 
to circulate the glycerin and to make sure that it is well mixed so that no tempera- 
ture gradients exist to alter the rise-time of the sphere. 

Lines, 20 em apart, are scribed on the outer cylinder. The time taken for the 
sphere to travel between the marks was measured to f 0.051- see using a stop- 
watch. The period of rotation of the cylinders was measured by reflecting light 
from a mirror into a photocell. The pulses created were sent into a counter that 
measured the time interval between them. 

An operating procedure was devised to remove, as far as possible, the sources 
of error. Calibration and rotation tests were run in pairs, with the inner tubes in 
each of four possible positions. If we denote the smaller movable tube by the 
letter A ,  the larger movable tube by B,  the outer fixed tube by C, and denote 
their relative position from the bottom by a sequence like CAB, this means that 
the sphere first moves through the cylinder C, then enters A ,  and finally B. 

All tests used the following sequence: the speed of rotation was set at a par- 
ticular value and the tubes were placed in position ABC. A calibration test was 
followed by two rotation tests and another calibration test. Then this sequence 
of tests was repeated for the tube positions BAC, CAB, CBA. Next the speed of 
rotation was changed and the whole procedure repeated. Four changes in rotation 
speed were made for each ball diameter and glycerin temperature used. Tests 
were run with ball diameters 0.254, 0.553 and 1.270 em and glycerin tempera- 
tures 74,84, 94 and 108 O F .  It was necessary to carry out such a large number 
of experiments in order to cover completely the ranges of the parameters T, 
R and a/A. 

The differential rotation w between the sphere and the basic flow was found by 
feeding the output of the photocell into a Strobatac Light Source. The sphere 
could be viewed a t  the same position during each revolution of the outer cylinder. 
A small identifying mark was painted on the sphere, and the number of container 
revolutions needed for the sphere to make 4 revolution relative to the basic 
solid-body rotation was determined. 

7 Found by 'calibrating' the observer against a known, repeatable time interval. 
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4. Reduction of data 
The data collected were for different T and R in each case. However, we shall 

present curves for constant values of these two parameters and show how they 
compare with the theoretical predictions for the same constant values. For each 
ball diameter and constant temperature, curves of IlU us. alA for the actual 
experimental values of T were plotted. A cross-plot of 1lU vs. T for various 
chosen, constant values of a lA  was made. In  particular, the value of I lU,  i.e. 
l /U& for a / A  = 0 and T = 0 was found by extrapolation. The Reynolds number 
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FIGURE 2.  DI6npvaU'- 1 vs. Reynolds number for various Taylor numbers. 
R 

RA of this point was calculated, and the sphere drag was found from the experi- 
mental values of Maxworthy (1965). This value is used as the calibration drag 
value D for the particular sphere and fluid temperature considered. 

From these curves, values of l / U  were tabulated for various conveniently 
chosen constant values of T and for the constant values of a /A  chosen earlier. 
Values of R for each of these points were calculated, together with values of 
Dl6npvaU with rotation. 
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A further series of cross-plots of DI6npvaUvs. R for the various constant 
values of T was made, each set of curves being for a particular value of a/A. 
The points on these final plots contain all sources of error, both errors in original 
measurement and errors in extrapolation of these basic data. 

2 % is due to the difficulty experi- 
enced in extrapolating the calibration curves to zero a/A. It is possible to reduce 
this arbitrary extrapolation to a certain extent. At the same time, this tech- 
niquegives theeffect of the wall and finite R on drag and can be compared with the 

The main source of the inaccuracy of about 

I 

10 
a 

FIUUEE 3. [D/GnpvaU’- 1]lR us. a for various Taylor numbers. 

theory of Faxen (1922). Extrapolation of the results with applied rotation are 
easier to perform since at low values of a / A  they are almost constant and the 
inaccuracies of extrapolation correspondingly reduced; for them the following 
complicated technique was not used. 

Extrapolated curves for the small-sphere diameters are almost straight, and 
are easy to extrapolate unambiguously; they are used as a starting point in a 
technique that builds curves for larger-sphere diameters, using the following 
‘bootstrap ’ technique. 

The experimental curves of l/U,vs. a / A  for each fluid temperature and the 
smallest sphere were plotted and extrapolated to zero a /A  as almost straight 
lines. The non-dimensional drag DIG.rr;pvuU~ at zero a / A  was found from Max- 
worthy (1965). The drag and Reynolds number for each of the experimental 
points could then be calculated from the knowledge of D, U,, a,  p ,  and Y a t  each 
of these points. We now have curves of DIGnpvaU, vs. a / A  for constant values of 
temperature, so that R varies monotonically along each of the curves in a known 
way. Since we wished to present graphs for constant values of R, it was necessary 
to interpolate between the experimental values at suitably chosen values of R. 
D/6npvaU0 was plotted versus the experimental values of R and constant 



Slow motion of a sphere in a rotating, viscousJluid 379 

values of a / h .  Values of the drag a t  chosen values of R could be found graphically 
at each value of a/A, and the original curve replotted as L)/6npvaUo vs. a/A for 
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FIGURE 4. D/6npvaU- 1 vs. a / h  for various Taylor and Reynolds numbers. 

extrapolate the curves obtained for larger sphere diameters, they must match 
these initial, small a /A  curves. 

Several trial extrapolations of the next larger sphere results were made until 
an extrapolation was found which closely matched the curves for the smallest 
spheres. The same procedure was followed for the still larger spheres except that 
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the extrapolation was now made to match the two previously coincident curves. 
The final curves show how the sphere drag varies for constant values of R and the 
complete range of alA considered experimentally. 

5. Results 
Figures 2 and 3 show two convenient ways of presenting the experimental 

results. The first of DIBn-pvaU’ - 1 us. R for various T up to 0-75 (with the wall 
effects removed) shows the modification of classical sphere drag and indicates 
good agreement between experiment and the theory of Childress (1964) when 
T and R are small; a continuous divergence exists as these two parameters in- 
crease. Of particular interest is the modification of the Reynolds-number 
dependence as the Taylor number is increased. When T is large, say 0(1) ,  the 
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IZ dependence virtually disappears, until R is quite large. The result, though not 
unexpected, gives estimates of the magnitudes of the various terms in the 
equation of motion and allows one to make reasonable approximations to this 
equation when any one of the parameters becomes larger than any other. 

In  order to compare results more directly with the calculations of Childress 
(1964)) [D/6npvaU'- 1]/R vs. a is plotted in figure 3, where a = 2T/R2. In  this 
representation Childress's results reduce to the single curve shown. One feature 
of the theory is missing; the small decrease in drag predicted a t  low values of a 
does not seem to be indicated by the experiments, although the experimental 
range is not large enough for the possibility to be rejected completely. 

0 2  04 0.6 1.0 2 4 6  10 

FIGURE 6. w/nR vs. a for various Taylor numbers. 

a 

All of the results presented so far have been concerned with drag in an infinite 
medium. The experimental technique also allows the determination of the effects 
of fluid containment within a cylinder. Figure 4 shows D167rpuaU - 1 as ordinate, 
a / A  as abscissa, and T and R as parameters. Only a few of the resulting curves 
were plotted in order to reduce the confusion that could result from putting all 
of the possible curves on one presentation. 

The only set of data which could not be reduced accurately by this method was 
that for the curves T = 0. These are plotted in figure 5, using the technique 
described in 3 4. 

Measurements of the rate of differential rotation are shown in figure 6 where 
wlQR is plotted versus a. Here agreement with theory at low T is apparently not 
good and requires explanation. 
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6. Discussion 
6.1. Motion in aJluid of in$nite extent 

Stated succinctly, the results of these experiments are: rotation greatly in- 
creases, and plays the major role in determining the drag on a sphere moving 
through a rotating viscous fluid. The very dominant role of the Coriolis para- 
meter, even when R and T are of the same magnitude, requires some discussion. 

The most reasonable consistency argument is as follows: writing the non- 
dimensional equation of motion in terms of the vorticity, one obtains: 

V20 + curl [U x {Ro + 2Ti}] = 0, 

where o and U are the non-dimensionalized vorticity and velocity vectors, 
respectively, and i the unit vector in the direction of the applied rotation. Be- 
cause of the action of the Coriolis forces, all three vorticity components, w,, 
w,., and w+ must be considered in a convenient cylindrical co-ordinate system, 
z, r ,  $. Note that in ordinary small-R flow, only w+ exists. 

Rotation has two effects: it modifies the magnitude and distribution of w+ 
that would have existed in its absence, and it produces new components w, and 
w,, the magnitudes of which depend in some way on the magnitude of the applied 
rotation. When R and T are of about the same magnitude, the experiments 
indicate that the drag and presumably the flow field are determined mainly 
by a balance of Coriolis and viscous forces. From equation (1) this means that, 
under these circumstances, w is smaller than 2i. This conclusion is consistent with 
the physical intuition we have developed about such flows, for it seems unlikely 
that w,, for example, could be magnified to the extent that it might exceed the 
magnitude of the applied vorticity. 

A self-evident benefit of this conclusion is the possibility of producing valid 
theories for any T, without having to worry about the non-linear convective 
terms in the equation of motion unless R is at least of the same order as T.  
It is possible that large-T theories will then give good representation of the 
real situation, even when R is large but smaller than T.  

It is one of the definite conclusions of this work and of Maxworthy (1965) 
that the theoretical first-order corrections to Stokes’s drag, caused by both 
rotation and finite R, are quite adequate to describe accurately the real flow over 
a reasonable range of parameter values. This is even more interesting because 
they are accurate even where higher-order terms could be expected to produce 
corrections that would be very apparent to the scale considered. This can be seen 
very clearlyin Maxworthy (1965) where a case is considered for which some of the 
higher-order terms are available. 

An apparently large discrepancy between the theoretically-predicted dif- 
ferential sphere rotation and the measured values requires explanation. If 
one cross-plots the raw data curves to see how the differential rotation varies 
with T, it  is found that the extrapolation to zero T, although changing very 
rapidly, is not completely ridiculous. Thus, while the drag varies slowly as 
T approaches zero, the differential rotation varies very rapidly. 
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6.2. Motion in aJluid of Jinite extent 

The wall effects are decreased by rotation. The effect of the Coriolis force on flow 
past a body is to decrease the radial velocity of flow around it. In  the limit of 
large T, the radial velocity is completely suppressed, and the flow, the so-called 
cylindrical or 'slug' flow, is the same in all planes perpendicular to the axis of 
rotation (Taylor 1923). This constraint on the radial flow, tending to straighten 
the streamlines, means that the straightening effect of the walls of the cylindrical 
container is reduced. In  the limit of large T, when the flow is wholly/one-dimen- 
sional, the walls can have no effect at all, since the flow streamlines, having no 
curvature in the meridional plane, are not aware of the presence of the wall. 
Figure 4 shows that rotation also has the effect of uncrossing the lines of constant 
R, a t  least for values of a/A below 0.12. 
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6.3. Similarity to magneto-Jluid dynamic Jlows 

The prediction of magneto-fluid dynamic (M.F.D.) effects from similar effects 
in a rotating fluid was one of the original purposes of the present work. Although 
no analogy exists in the strictest sense, the similarity is interesting enough to 
warrant attention. The present discussion will be limited to a few simple remarks 
on the low R, low T, low H 2  cases, where H2,  the square of the Hartman number, 
is the ratio of magnetic forces to viscous forces and is the quantity analogous to 
the Taylor number. 

In  M.F.D., in addition to the presence of a magnetic field, an extra material 
property is present, the electrical diffusivity llpcr, where cr is the electrical con- 
ductivity and p the permeability of the fluid medium. Thus, one further dimen- 
sionless parameter can be formed; namely, the magnetic Prandtl number vpcr, 
the ratio of viscous-diffusivity to magnetic diffusivity. The electrical diffusivity 
dissipates azimuthal electric current; while in the rotating flow, viscous dif- 
fusivity dissipates the azimuthal swirl velocity. Thus, for the two cases to be 
similar, strictly we can only consider the case of up" = 1. 

Although the equations to be solved in the two cases are rather different, a 
sixth-order equation in the rotating case and a fourth-order in the M.F.D. case, 
the methods of analysis for both are virtually identical and point to the im- 
portance of the parameters Ta/R and HIR. Superficially, these two parameters 
would seem to have no great physical significance, and, in fact, they have been 
rather neglected in favour of the combinations T / R  and H2/R, which measure the 
relative magnitudes of Coriolis or Lorentz forces to inertia forces. Childress has 
shown the mathematical significance of both the former, and their physical 
importance is just being realized (Goldberg & Jarvinen 1964). They can be found 
in a natural way by calculating a Reynolds number based on a length over which 
the Coriolis or Lorentz forces are of comparable magnitude to viscous forces; 
e.g. L N [v/L2]*; L N [pv2/,u]*/B, where B is the magnetic field strength. Since 
most of the dissipation takes place in regions where this criterion is satisfied, 
the appearance of these parmeters is not surprising. 

Under the circumstance considered, it is proposed that the available M.F.D. 

theories will adequately describe low R, low H flows. The appearance of v p r  
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as an independent parameter restricts the usefulness of the comparison, but it is 
believed that confidence can be placed in the results even when v p v  is not unity. 

The workmanship and design abilities of Mr D.E.Griffith have been of in- 
estimable value in this experimental investigation. Many fruitful discussions 
with Dr W. S. Childress and Dr P. G. Saffman are also gratefuljy acknowledged. 

This paper presents the results of one phase of research carried out at the Jet  
Propulsion Laboratory, California Institute of Technology, under Contract 
no. NAS 7-100, sponsored by the National Aeronautics and Space Administration. 
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